Computing Exact Solutions to Hirota-Satsuma KdV System
نویسندگان
چکیده
In this paper we obtain one and two soliton solutions to HirotaSatsuma KdV system with the aid of Hirota’s bilinear method. We also obtain some rational solutions. Mathematics Subject Classification: 35C05
منابع مشابه
Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملSoliton Solutions of the Time Fractional Generalized Hirota-satsuma Coupled KdV System
In this present study, the exact traveling wave solutions to the time fractional generalized Hirota-Satsuma coupled KdV system are studied by using the direct algebraic method. The exact and complex solutions obtained during the present investigation are new, whereas literature survey has revealed generalizations of solutions. The solutions obtained during the present work demonstrate the fact ...
متن کاملNew explicit exact solutions for the generalized coupled Hirota-Satsuma KdV system
In this paper, we study the generalized coupled Hirota–Satsuma KdV system by using the two new improved projective Riccati equations method. As a result, many explicit exact solutions, which contain new solitary wave solutions, periodic wave solutions and combined formal solitary wave solutions and combined formal periodic wave solutions are obtained. c © 2007 Published by Elsevier Ltd
متن کاملApplications of He′s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the timefractional Klein-Gordon equation, and the time-fractional HirotaSatsuma coupled KdV system. The Hes semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply Hes semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the timefractional Hirota...
متن کاملNew Darboux Transformation for Hirota-Satsuma coupled KdV System
A new Darboux transformation is presented for the Hirota-Satsuma coupled KdV system. It is shown that this Darboux transformation can be constructed by means of two methods: Painlevé analysis and reduction of a binary Darboux transformation. By iteration of the Darboux transformation, the Grammian type solutions are found for the coupled KdV system.
متن کامل